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Branch Prediction

* In super-pipelined processors, there is a significant lag between
the beginning of the execution of an instruction and when its
result becomes available.
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Branch Prediction

* This trait also applies to conditional direct branches
- However, waiting for the result of the instructions affecting
a conditional branch is wasteful.

- Therefore, the processor makes an educated guess as to
where the conditional branch will lead to.

- |f the guess is wrong, it all goes to waste.

* Conditional direct branch prediction techniques aim
at increasing the frequency when the processor
makes the right guesses.




Indirect Branch Prediction

* Like conditional direct branches, indirect branches may lead to
more than one target.

* Unlike conditional direct branches, which may lead to just two
targets, indirect branches may lead to multiple targets.

* Therefore, indirect branch prediction techniques have traditionally
been less efficient than for conditional direct branch.

* Moreover, because of multiple possible targets, predicting indirect
branches needs more resources than predicting conditional direct
branches, leading to more implementation compromises and
limitations, depending on the transistor budget.




Jump Tables

* In the presence of a large number of conditional
cases, it is more efficient to use a table of targets
together with indirect branches.

- Advantages: simple execution, compact code size.

- Disadvantages: reliance on efficient indirect branch
prediction.

* Moreover, with the increased popularity of interpreted
languages and object oriented languages, many
programs rely heavily on jump tables.




Jump Tables in LLVM

. T

ne previous algorithm used to generate jump tables in
VM, selectionDAGBuilder: :findJumpTables (), by

ans Wennborg, was based on the work by Kannan &

Proebsting.

- Minimizes the number of partitions of clusters of cases by

maximizing their sizes.

- O(n2?)

* However, the resulting jump tables have virtually unlimited
size, which may overwhelm the processor resources
dedicated to indirect branch prediction.




Jump Tables in LLVM

* The algorithm in selectionDAGBuilder::findJumpTables () Was
modified to optionally limit the size of partitions of clusters.

— Suiting them to the limitations of the indirect branch predictor in the target.
— The default, unlimited size, yields the same results as before.

* Moreover, since conditional direct prediction tends to be more accurate
than indirect branch prediction, it favors conditional direct branches
over sparse clusters with few cases.

— Maximizes the number of partitions of clusters by limiting their sizes.
— Maximizes the density of clusters of cases.

* Fewer sparse partitions, falling back to conditional direct branches.

— O(nlog n)




Jump Tables in LLVM
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Jump Tables in LLVM
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Results: Samsung Exynos M1
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Results: Samsung Exynos M1
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Results: ARM Cortex A57
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Results: ARM Cortex A57
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Results: Intel i7 Skylake

SPECint2000

sub-title

106%
104%

102% o

m3

1 OOO/O 1 6

m 32

98% H 64
96%
94%
92%
90%

164.9zip 176.gcc 181.mcf  186.crafty 197.parser 253.perbbmk 254.gap  255.vortex 256.bzip2  300.twolf SPECint2000

Minus 175.vpr and 252.eon 14




Conclusion

* The results depend largely on the implementation of the
indirect branch predictor in the processor and, of course,
on the workload.

* In particular, though a jump table may have a large number of
entries, only a few of them may be used in a given workload,
possibly within the limitations of a particular indirect branch
predictor.

Give it a try!
—-mllvm —min—-Jump—-table—-entries=<entries>
—mllvm —-max—Jjump-table—-silize=<entries>
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