LLVM Performance Workshop
CGO 2017

Efficient clustering of case statements for
indirect branch prediction

Evandro Menezes, Aditya Kumar, Sebastian Pop
Samsung Austin R&D Center

{e.menezes, aditya.k’/7, s.popl@samsung.com

February 4, 2017
Austin, TX

Branch Prediction

* In super-pipelined processors, there is a significant lag between
the beginning of the execution of an instruction and when its
result becomes available.

Clock cycle
=2 =3 £ 5 | &7 V4 S

Wwaiting
iNnstructions

Stage 1: Fetch

Stage 2: Decode

Pipeline

Stage 3: Execute

Stage 4: Write-baclk

Completed
iNnstructions

Image: "Generic 4 stage pipeline". Wikimedia Commons 2

Branch Prediction

* This trait also applies to conditional direct branches
- However, waiting for the result of the instructions affecting
a conditional branch is wasteful.

- Therefore, the processor makes an educated guess as to
where the conditional branch will lead to.

- |f the guess is wrong, it all goes to waste.

* Conditional direct branch prediction techniques aim
at increasing the frequency when the processor
makes the right guesses.

Indirect Branch Prediction

* Like conditional direct branches, indirect branches may lead to
more than one target.

* Unlike conditional direct branches, which may lead to just two
targets, indirect branches may lead to multiple targets.

* Therefore, indirect branch prediction techniques have traditionally
been less efficient than for conditional direct branch.

* Moreover, because of multiple possible targets, predicting indirect
branches needs more resources than predicting conditional direct
branches, leading to more implementation compromises and
limitations, depending on the transistor budget.

Jump Tables

* In the presence of a large number of conditional
cases, it is more efficient to use a table of targets
together with indirect branches.

- Advantages: simple execution, compact code size.

- Disadvantages: reliance on efficient indirect branch
prediction.

* Moreover, with the increased popularity of interpreted
languages and object oriented languages, many
programs rely heavily on jump tables.

Jump Tables in LLVM

. T

ne previous algorithm used to generate jump tables in
VM, selectionDAGBuilder: :findJumpTables (), by

ans Wennborg, was based on the work by Kannan &

Proebsting.

- Minimizes the number of partitions of clusters of cases by

maximizing their sizes.

- O(n2?)

* However, the resulting jump tables have virtually unlimited
size, which may overwhelm the processor resources
dedicated to indirect branch prediction.

Jump Tables in LLVM

* The algorithm in selectionDAGBuilder::findJumpTables () Was
modified to optionally limit the size of partitions of clusters.

— Suiting them to the limitations of the indirect branch predictor in the target.
— The default, unlimited size, yields the same results as before.

* Moreover, since conditional direct prediction tends to be more accurate
than indirect branch prediction, it favors conditional direct branches
over sparse clusters with few cases.

— Maximizes the number of partitions of clusters by limiting their sizes.
— Maximizes the density of clusters of cases.

* Fewer sparse partitions, falling back to conditional direct branches.

— O(nlog n)

Jump Tables in LLVM

declare void @g(i32)

define void @test (132

entry:

switch i32 %x,

]

i32
i32
i32
i32

i32
i32

return:
tail
tail
tail
tail

bbl:
bb2:
bb3:
bb4:
bbl4:
bbl5:

}

’

~

= w N e
~

14
15

re

label
label
label
label

, label
, label

t void

call void @g(i32
call void Qg
call void Qg
call void Qg (132
tail call void @g(i32 5) br label %return
tail call void @g(i32 6) br label %return

labe
$bb1l
%bb?2
%bb3
%bb4

3bb
3bb

test

Fx) Ao

1l %$return [

bb{14,...,14,15}

14
15

1) br label %return
132 2) br label %return
132 3) br label %return
4

(
(
(
(

br label %return

-max-jump-table-size=0

Jump Tables in LLVM

declare void @g(i32)

define void @test (132

entry:

switch i32 %x,

]

i32
i32
i32
i32

i32
i32

return:
tail
tail
tail
tail

bbl:
bb2:
bb3:
bb4:
bbl4:
bbl5:

}

’

~

= w N e
~

14
15

ret void
call void @g(i32

label
label
label
label

, label
, label

call void Qg
call void Qg
call void Qg (132
tail call void @g(i32 5) br label %return
tail call void @g(i32 6) br label %return

labe
$bb1l
%bb?2
%bb3
%bb4

3bb
3bb

Fx) Ao

test

1l %$return [
bb{1-4} bb14 bb15
14
15
g

(1) br label %return

(132 2) br label %return

(132 3) br label %return

(4) br label %return

-max-jump-table-size=3

Results: Samsung Exynos M1

SPECint2000

sub-title

1.1
1.08
1.06

H o

1.04 m3

1.02

—_

0.9

oo

0.9

»

IIIIIIIJIIIII

175.vpr 181.mcf 197.parser 253.perlbmk 255.vortex 300.twolf
164.9zip 176.gcc 186.crafty 252.eon 254.gap 256.bzip2 SPECint2000

0.9

X

10

Results: Samsung Exynos M1

JPEG

LZMA

Other Benchmarks

11

Results: ARM Cortex A57

SPECint2000
sub-title
106%
104%
B
102% m3
16
100% w32
H 64
98%
96%
94%
175.vpr 181.mcf 197.parser 254.gap 256.bzip2 SPECint2000
164.9zip 176.gcc 186.crafty 253.perlomk 255.vortex 300.twolf

Minus 252.eon 12

Results: ARM Cortex A57

Other Benchmarks

sub-title

Lua
M
ms
16
JPEG w32
H 64

LZMA

92% 94% 96% 98% 100% 102% 104% 106%

13

Results: Intel i7 Skylake

SPECint2000

sub-title

106%
104%

102% o

m3

1 OOO/O 1 6

m 32

98% H 64
96%
94%
92%
90%

164.9zip 176.gcc 181.mcf 186.crafty 197.parser 253.perbbmk 254.gap 255.vortex 256.bzip2 300.twolf SPECint2000

Minus 175.vpr and 252.eon 14

Conclusion

* The results depend largely on the implementation of the
indirect branch predictor in the processor and, of course,
on the workload.

* In particular, though a jump table may have a large number of
entries, only a few of them may be used in a given workload,
possibly within the limitations of a particular indirect branch
predictor.

Give it a try!
—-mllvm —min—-Jump—-table—-entries=<entries>
—mllvm —-max—Jjump-table—-silize=<entries>

15

References

* Kannan; Proebsting. “Correction to ‘producing good code for the
case statement’”, 1994.

*Lee. “ECE 570 High Performance Computer Architecture: Dynamic
Branch Prediction”, Oregon State.

* Kim; Joao; Mutlu; Lee; Patt; Cohn. “VPC Prediction: Reducing the
Cost of Indirect Branches via Hardware-Based Dynamic
Devirtualization”, 2007 .

16

http://llvm.org/doxygen/classllvm_1_1SelectionDAGBuilder.html
https://reviews.llvm.org/D21940
https://reviews.llvm.org/D25212

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

