
Towards Ameliorating
Measurement Bias in Evaluating
Performance of Generated
Code

Kristof Beyls

EuroLLVM
18/3/2016

© ARM 2016 2

Intro

§  Evaluating performance of generated code
§  As a pre-commit test for a new optimization patch.
§  As post-commit performance tracking.

§  Is the patch/commit OK?
§  Measurements often give conflicting and sometimes misleading answers.

§  Even when the benchmarking system is setup well to avoid CPU-
external noise:
§  Programs pinned to a specific core.
§  Turn off daemon processes/OS services.
§  Make sure CPU frequency scaling doesn’t happen.

© ARM 2016 3

Codegen Change: Often Unclear if Good or Bad.

§  Which benchmarks matter?
Change is often good for one
benchmark, bad for the other.

§  Which micro-architectures?
Change can be good for one
micro-architecture, bad for the
other.

§  Noisy system:
Same program running at
different speeds when executed
multiple times

§  Chaotic system:
Small program change causes
non-linear effect on execution
speed.

© ARM 2016 4

Multiple Benchmarks Giving Different Results.

© ARM 2016 5

Noise

© ARM 2016 6

Noise + Chaotic Behavior

© ARM 2016 7

Getting the Whole Space to Avoid Drawing
Wrong Conclusion

© ARM 2016 8

Codegen Change: Often unclear if Good or Bad.

§  Which benchmarks matter?
Change is often good for one
benchmark, bad for the other.

§  Which micro-architectures?
Change can be good for one
micro-architecture, bad for the
other.

Solutions not purely technical
è Not covered further here

§  Noisy system:
Same program running at
different speeds when executed
multiple times

§  Chaotic system:
Small program causes non-linear
effect on execution speed.

Solutions can be purely technical
è Topic of this presentation

© ARM 2015 9

Some Characteristics of Noisy
Performance

© ARM 2016 10

Typical Noise when Running a Binary Multiple
Times
§ Programs in the test-suite, running on Cortex-A53 and Cortex-A57.
§ Most are relatively low-noise:

© ARM 2016 11

Noise is not Consistent Between Cores

© ARM 2016 12

Noise is Distributed in Many Different Ways

Normal

Skewed
Normal

Bimodal

Quad-
Modal?

Skewed
Bimodal

© ARM 2015 13

Some Examples of Chaotic
Performance

© ARM 2016 14

Rahman et al, WBIA 2009

“Studying Microarchitectural Structures with Object Code Reordering”
http://doi.acm.org/10.1145/1791194.1791196

© ARM 2016 15

Mykowitz et. al, ASPLOS 2009

“Producing Wrong Data Without Doing Anything Obviously Wrong”
http://doi.acm.org/10.1145/1508244.1508275

© ARM 2016 16

Kalibera et al, ISMM 2013

§  Noise with code layout variation
is typically a few times higher.

“Rigorous Benchmarking in Reasonably Time”
http://doi.acm.org/10.1145/2464157.2464160

© ARM 2015 17

Own Experiments to Characterize
Chaotic Performance

© ARM 2016 18

Do These Randomize Enough?

§  The cited articles at best change the order of functions, i.e. offsets
between functions.

§  It shouldn’t be that hard to also randomize intra-function offsets.
§  Try out 2 approaches:

§  Insert random number of bytes after BB ending in unconditional branch.
§  Make all BB end in unconditional branch. Add random number of bytes after each BB.

§  Implemented as a MachineFunctionPass for AArch64. Ran experiments
using 479 programs in from test-suite, SPEC2000, and a number of
other commercial benchmark suites.

© ARM 2016 19

Relative Standard Deviation over 25 runs, for all
479 programs

© ARM 2016 20

Relative Standard Deviation over 25 runs, for all
479 programs

© ARM 2016 21

Relative Standard Deviation over 25 runs, for all
479 programs

© ARM 2016 22

Relative Standard Deviation over 25 runs, for all
479 programs

© ARM 2016 23

Relative Standard Deviation over 25 runs, for all
479 programs

© ARM 2016 24

Relative Standard Deviation over 25 runs, for all
479 programs

© ARM 2016 25

Relative Standard Deviation over 25 runs, for all
479 programs

NOISE NOISE NOISE

CHAOTIC
+9 %

CHAOTIC
+11 %

CHAOTIC
+20 %

© ARM 2016 26

Highly Chaotic Performance on Some Programs

Even if it’s only a few programs, each one requires manual investigation!

© ARM 2016 27

Did We See This in Trend Graphs But Didn’t
Notice?

© ARM 2016 28

Did We See This in Trend Graphs But Didn’t
Notice?

© ARM 2016 29

How does performance change with
randomization (all 479 programs)?

© ARM 2016 30

Relative Standard Deviation of 25 runs, for
SPEC2000(x programs)

NOISE NOISE NOISE

CHAOTIC
+19 %

CHAOTIC
+51 %

CHAOTIC
+48 %

SPEC2000 about 3x less noisy, chaotic behavior has more weight.

© ARM 2016 31

How to Measure Effect of Patch Correctly.

§  Inject randomization so that the whole population of program layouts
gets sampled.

§  Do enough runs to get statistically valid results.

§  … but isn’t this going to be painfully slow?
§  Our performance tracking bots already are too slow – when they only

do a fraction of the necessary runs to get fully statistically valid results?

© ARM 2015 32

Can Coping with Noise and
Measurement Bias be done Efficiently?

© ARM 2016 33

Suggestions in Literature

M
an

y
pr

og
ra

m
s	

R
an

do
m

iz
e	

C
on

fid
en

ce

In
te

rv
al

s	

E
st

. s
am

pl
e

si
ze

	

R
ed

uc
e

in
pu

ts
	

M
ul

ti
pl

e
re

vi
si

on
	

Producing Wrong Data Without Doing Anything Obviously
Wrong!, ASPLOS09 +	
 +	
 +	

Variability in Architectural Simulations of Multi-threaded
Workloads, HPCA03 +	
 +	
 +	

A study of Performance Variations in the Mozilla Firefox
Web Browser. ACSC13 -­‐	
 +	
 +	
 +	

Stabilizer: Statistically Sound Performance Evaluation.
ASPLOS13 ++	

Simulation of Comp. Arch.: Simulators, Benchmarks,
Methodologies, Recommendations. IEEE TC 2006 +	

Rigorous Benchmarking in Reasonable Time. ISMM13 +	
 +	
 +	
 ++	
 ±

Avoiding Bias Increasing Speed

© ARM 2016 34

What does LNT/test-suite already implement?

M
an

y
pr

og
ra

m
s	

R
an

do
m

iz
e	

C
on

fid
en

ce

In
te

rv
al

s	

E
st

. s
am

pl
e

si
ze

	

R
ed

uc
e

in
pu

ts
	

M
ul

ti
pl

e
re

vi
si

on
	

LNT supporting test-suite/Externals ±

Automatic reruns on changed result ? ?

Test-suite has support for “SMALL” ±

Multi-rev analysis ±

Multi-sampling (avoiding noise) ? ?

Hash of binary ±

Avoiding Bias Increasing Speed

© ARM 2016 35

LNT/test-suite Ideas for Further Improvements

Post-commit (bot): 1 hour time.
1.  Multi-revision analysis with

exponentially weighted average?
2.  Test-suite: Reduce SMALL

size, see Rigorous Benchmarking
in Reasonable Time.

Pre-commit: hours/days time.
3.  Multi-run analysis with layout

randomization that doesn’t
break layout optimizations?

4.  Test-suite: add more benchmarks – not much seeming overlap
between benchmark suite characteristics at the moment.

5.  Further progress cmake/lit-ification of test-suite to easily apply
techniques across all benchmarks.

6.  Auto-tune number of samples to be (program,platform)-specific?

© ARM 2016 36

Summary

§  Noisy and chaotic performance makes evaluating code generation
changes harder.

§  Randomizing program layout can be achieved with a simple late
MachineFunctionPass, to avoid measurement bias.

§  A few improvements to LNT/test-suite can probably go a long way to
coping further with noise and chaotic performance without blowing up
experimentation time.

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners.

Copyright © 2016 ARM Limited

