Debug Information
From Metadata to Moaules

Adrian Prantl Duncan Exon Smith
Apple Apple

What is Debug Information®

e provides a mapping from source code — binary program
e on disk: as DWARF, a highly compressed format

* in LLVM: as metadata (pre-tinalized DWARF)

® Types, Subprograms (45% of the DWARF for clang)
® Strings
45% @ Locations
® Ranges, Inline
® Line table
@ Accelerator

17% DWARF debug information for clang r250459, RelWithDeblnfo+Assertions

Debug Info, Scalability, and LTO

volume of debug info limits scalabillity of
the compiler, particularly when using LTO

we attacked this problem from two sides:
 LLVM: efficient new Metadata representation

* Clang: emit less debug info with Module Debugging

| LVM: efficient new Metadata representation

 making Metadata lightweight: dropping use-lists and separating
from Value

» specialized MDNodes: syntax, 1sa support, and memory footprint

e constructing Metadata graphs efficiently and distinct Metadata

e grab bag of other major LTO optimizations

Making Metadata lightweignt

old class hierarchy

Value

MDString MDNode Argument User

How do operands work”

Value

MDString MDNode Argument User

How do operands work”

intrusive storage for use-lists

e

L

How do operands work”

User operands are an array of Uses

How do operands work”

ValueHandles are second-class

LN

How did operands work?”

old MDNode operands were an array of ValueHandles

Separating Metadata from Value

Metadata Value

D N

MDString MDNode Argument User

Separating Metadata from Value

Metadata

DN

MDString MDNode

Metadata is lightweight

Metadata

DN

\Y/IDNjigigle MDNode

Metadata base class has size of 1 pointer

e NO vtable

* NO use-lIsts

Metadata
md-flags

* NO lype pointer

Metadata is lightweignt

-

new MDNode operands are 4x smaller

Specialized MDNodes for debug info

MD Tuple: generic MDNode

Metadata

DN

MDString MDNode

S

MDTuple

MD Tuple syntax
11 = {12, !"string"}

ISa support
1f (1sa<MDTuple>(N)) { ... }

DILocation: syntax

Metadata
MDS}» MDNode
DILocation MD Tuple

11

IDILocation(line: 30, column: 7, scope: !2)

DILocation: I1sa support

Metadata

DN

MDString MDNode

-

DILocation

1f (isa<DILocation>(N)) { ... }

DILocation: memory footprint

16-bit column scope InlinedAt

What about other Metadata graphs?

* we should have more primitives for generic Metadata
 MDInt and MDFloat: skip Constantint and ConstantFloat
e vectors, dictionaries and lists (when tuples don't fit)

* specialized nodes: syntax, Isa support, and memory footprint

e what makes a graph important and/or stable enough®

e can we enable it for out-of-tree nodes?

Constructing Metadata graphs

e frontends (DIBuilder), bitcode deserialization, and lib/Linker build
metadata graphs

 need temporary nodes for forward references
* need use-lists (and RAUW support) to replace temporary nodes
 Metadata use-lists are second-class

e how can we [imit exposure to use-lists?

Temporary storage for explicit use-lists

e |argely unoptimized

* USes side storage

» dropped automatically, except
uniquing cycles

Constructing a graph

10 = {11}
11 = 1{12}
12 = 1}

how can we build this graph?

Constructing a graph, top-down

-I |

10 =1{11}
1T =1{12}
12 =11}

create temporary node for !1

Constructing a graph, top-down

0 » 4

10 =1{11}
1T =1{12}
12 =11}

create (unresolved) node for |0

Constructing a graph, top-down

0 » 4

10 = 1{11}
11T = 1{12} 2!
12 = 1{}

create temporary node for 12

Constructing a graph, top-down

0 » i

10 = 1{11}
11 = {12} 1 » o
12 = 1{}

create (unresolved) node for !

Constructing a graph, top-down

0 » i

10 = {11}
11 = {12} : Sy
12 = 1{}

replace temporary node for 1 with real node

Constructing a graph, top-down

0

10 = 1§11}
11 =112} ! o
12 = 1{}

2

create node for 12

Constructing a graph, top-down

0

10 = {11}
11 = 1{12} -' e
12 = 1{}

2

replace temporary node for 12 with real node, resolving 1 and !0

Constructing a graph, top-down

0

10 = {11}
11 = 1{12}
12 = 1}

2

that was a lot of RAUW and malloc traffic...

Constructing a graph, bottom-up

10 =1{11}
1T =1{12}
12 =11}

avold malloc traffic and RAUW by reversing the order

Constructing a graph, bottom-up

10 = 1{11}
11 = 1{12}
12 = 1]

2

create node for 12

Constructing a graph, bottom-up

10 = 1{11}
11 = 1{12}
12 = 1}

2

create node for !'1

Constructing a graph, bottom-up

0

10 = {11}
11 = 1{12}
12 = 1}

2

create node for 10

Constructing a graph, bottom-up

0

10 = {11}
11 = 1{12}
12 = 1}

2

no extra malloc traftic; no RAUW

Constructing a cycle of unigued nodes

0
10 = 1{!1}
11 = 1{12}
12 = 1{10} 1 e

building a cycle of unigued nodes requires temporary nodes

Not every node should be unigued

e graphs intentionally defeat uniguing when they want distinct nodes

o lalias.scopes need distinct root nodes

* DlLexicalBlocks lack naturally discriminating operands

e cycles of unigued nodes need forward references and RAUW
e cycles of unigued nodes "look" distinct

* we don't solve graph isomorphism

distinct nodes are more efficient

 distinct nodes are not uniqued

11
12

distinct !4}
distinct !4}

* note: self-references are automatically distinct
11 = 1{11} =l 1] = distinct !{!1}

* NO re-unigquing penalty when operands change

* never require use-lists (or RAUW support)

Constructing cyclic graphs efficiently

0
10 = distinct {11}

11 =1{12}

12 = 1{10} : ’ 3

we can do better with distinct nodes

Constructing cyclic graphs efficiently

0

10 = distinct 1{!1} /
11 =1{12}
12 = 1{10}

create node for !0, with a dangling operanad

Constructing cyclic graphs efficiently

0
10 = distinct 1{!1} /

11 =1{12}

12 = 1{10} g

create node for 12

Constructing cyclic graphs efficiently

0
10 = distinct 1{!1} /

11 = 1{12}

12 = 1{10} 1 , ?

create node for !'1

Constructing cyclic graphs efficiently

0
10 = distinct {11}

11 =1{12}

12 = 1{10} : ’ 3

patch operand(s) for |0

Constructing cyclic graphs efficiently

0
10 = distinct {11}

11 =1{12}

12 = 1{10} : ’ 3

e careful scheduling avoids malloc traftic and RAUW

e partial support in lib/Linker; not done in BitcodeReader (yet)

Grab bag: other major LTO optimizations

 Metadata lazy-loaded (in bulk); new LTO API to expose it

e avoided lib/Linker quadratic memory leak into LLVMContext from
globals with appending linkage

e debug info requires fewer MCSymbols (and they're cheaper)

* Value has dropped a couple of pointers

What progress have we made”?

runtime and peak memory usage of |d, when linking executables from 3.6 (r240577) source tree

25m 41s
38s| 1.40GB] 8m 32s 15.1GB| 19m 45s 35.9GB
35s| 0.79GB, 7/m 52s 9.15GB 18m 10s 19.3GB
lom 23s

self-hosted clang/libLTO, using 1d64-253.2 from Xcode 7 on a 2013 Mac Pro with 32GB RAM

What's left in LLVM?

e use more distinct nodes; take more advantage of them

e richer syntax for scoped debug info nodes
* fine-grained lazy-loading of debug info metadata

* debug info graphs need to be sliceable (link only what's used)

 MC-layer diet v2 (I'm looking at you, MCRelaxableFragment)

* |eave debug info types out of LTO!

Debug Information

e provides a mapping from source code — binary program

e stored In extra sections in the .o files StringRef.o

. text:
_ZN411lvm9StringReft:

.debug_1info:
class StringRef {

.debug_line:
0x10 StringRef.cpp 23
0x20 StringRef.h 128

Where does it go”

Option 1: linker leaves debug info in the .o files

StringRef.o PassManager.o ccl main.o
text: . text: . text:
_ZN411lvm9StringReft:
.debug_1info: .debug_1info:
.debug_1info:

class StringRef { _ _
. .debug_l1ine: .debug_l1ine:

.debug_line:
0x10 StringRef.cpp 23
0x20 StringRef.h 128

Where does it go”

Option 1: linker leaves debug info in the .o files
» fast linking — slow debugging

StringRef.o PassManager.o ccl main.o
. text: . text: . text:
.debug_1info: .debug_1info:
.debug_1info:

class StringRef { _ _
. .debug_l1ine: .debug_l1ine:

.debug_line:
0x10 StringRef.cpp 23
0x20 StringRef.h 128

which file has the definition of StringRet”

bin/clang

. text:
_ZN411lvm9StringRef:

. text:

. text:

Where does it go”

Option 2: linker links debug info together with the executable

| | bin/clang
* typically done on Linux o
. teXT:
e very long link times
.debug_1info:

.debug_line:

Where does it go”

Option 2: linker links debug info together with the executable

* typically done on Linux

e very long link times

+ split DWARF

relocatable skeleton
iInked with executable

— bulk In external .dwo

bin/clang

. text:

.debug_1info:

.debug_line:

StringRef.dwo

.debug_1info.dwo:
class StringRef A

.debug_line.dwo:
X+0x0 StringRef.cpp 23
X+0x10 StringRef.h 128

Where does it go”

Option 3: debug info archived separately from executable

StringRef.o PassManager.o ccl main.o
text: . text: . text:
_ZN411lvm9StringRef:
.debug_1info: .debug_1info:
.debug_1info:

class StringRef { _ _
. .debug_l1ine: .debug_line:

.debug_1line:
0x10 StringRef.cpp 23
0x20 StringRef.h 128

Where does it go”

Option 3: debug info archived separately from executable

| | bin/clang clang.dSYM / clang.dwp
1. dsymutil (Darwin) _
.text: .debug_1info:
| _ZN411lvm9StringRef: class StringRef {
2. dwp (Linux)
.debug_Lline:

0x10 StringRef.cpp 23
0x20 StringRef.h 128

Why is c lang.dSYM 1.2GB?

e the problem is type information, specifically,
redundant type information:

e #include “lLlvm/ADT/StringRef.h”
at —g recursively pulls in ~46KB of types into
each .o file and there are ~1500 . 0 files

(llvm-)dsymutil

* anew linker for debug information built on top of LLVM

o dsymultil collects debug info from all the . 0 files and generates a
single .dSYM bundle with all the debug info and accelerator tables
for fast lookup

» dsymutil performs ODR type uniquing for C++

(llvm-)dsymutil

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

-flimit-debug-info

(also known as —fno-standalone-debug)

 emit C++ class types only in the . 0 file that has the vtable of the
class or an explicit template instantiation and forward declarations
everywhere else

* only C++ classes with vtables / explicit template instantiations
» every .o file and (3rd-party) library must be built with debug info

» debugger must scan every .0 file for the definition of StringRef
(LLDB does not even support that)

 Darwin and FreeBSD defaultto —fstandalone-debug

-flimit-debug-info

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

Clang Modules

o Clang Modules are a saner alternative to textual #1nc lude

e think of them as precompiled headers + additional semantics

* on disk: .pcm file with the serialized Clang AST of header files
* Darwin: built implicitly and stored in a global module cache

o Linux: typically built explicitly

Modaule Debugging

* puild Debug Info together with the Clang Module

* new driver option: —gmodu Les
ccl: —dwarf—-ext-refs —fmodule-format=o0bj

e emit COFF/ELF/Mach-O Module containers

LLVM_Utils.pcm

. , | . clang_ast:
with a . clang_ast section holding the AST. class StringRef A
 emit full debug information for every type in
.debug_1info:

the module class StringRef {

e debug info contributes ~15% of the . pcm size

Module debugging also works with precompiled headers

Reminder: -flimit-debug-info

use: forward declaration definition
TableGen.o StringRef.o
. text: .text:

call _ZN41lvm9StringRef..

.debug_1info: .debug_1info:
namespace { namespace llvm {
class StringRef; class StringRef A

! StringRef(const charx);

Modadule Debugging

use: forward declaration definition
TableGen.o LLVM_Utils.pcm
. text: .clang_ast:
call _ZN41lvm9StringRef..
metadata for rebuilding
debug info: / module for header file debug info:
module LLVM Utils { module LLVM Utils {
module ADT { module ADT A
namespace { Nnamespace ¥lvm {
class StringRef; class StringRef 1
1 StringRef(const charx);
}
}

dwo_name = LLVM Utils.pcm

dwo_1d = <module_hash> split DWARF for locating module debug info on disk

dsymutil and Clang Modules

 dsymutil clones the debug info from clang.dSYM
all imported modules into the . dSYM .debug_info:
pbundle pottom-up module Darwin <
module C {

, | . module stdint { .. }
 meanwhile using “ODR" type uniguing

to resolve all forward declarations \ b

| | module std {
* top-level modules are unique: this

works for C, C++ and Objective-C \ module vector { .. }

| module LLVM Utils { .. }
e consumers of the resulting .dSYM

need not know about modules StringRef(const charx)

dsymutil and Clang Modules

/m 30s 4.1G

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

dsymutil and Clang Modules

/m 30s 4.1G

26m 39s

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

dsymutil and Clang Modules

26m 39s
26m 05s 3.9G

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

dsymutil and Clang Modules

26m 39s . 1G
26m 05s 3.9G
31m 41s 8.9G 322M

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

dsymutil and Clang Modules

/m 30s 4.1G
/m 23s 3.1G
om 28s 7.2G 322M
4m 54s 1.2G 368M

20m 39s 5.1G
206m 05s 3.9G
31m 41s 8.9G 322M
20m 355 1.6G 369M

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM
clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

dsymutil and Clang Modules

/m 30s 4.1G 413M
/m 23s 3.1G 402M
om 28s 7.2G 322M 504M
4m 54s 1.2G 368M 453M

206m 39s 5.1G 388M
206m 05s 3.9G 387M
31m 41s 8.9G 322M 381M
20m 35s 1.06G 369M 40 M

measured on a 2013 Mac Pro with 12 cores at 2.7GHz and 32GB RAM

clang r250459, X86/ARM/AArche4, RelWithDeblnfo+Assertions, 1 parallel LTO link

What it consumers know about Modules”

 LLDB is built on top of Clang

 when evaluating an expression, LLDB
1. loads type info from DWARF
2. builds a Clang AST

3. compiles and executes the Clang AST

What it consumers know about Modules”

 LLDB is built on top of Clang

 when evaluating an expression, LLDB a module-aware LLDB

1. leadstypeintetromBbWARE e Imports the type's AST
from the Clang Module
2. butdsaGlargAst

3. compiles and executes the Clang AST

Questions?

