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What’s in an ABI?

• The size, alignment, etc. of types 

• Layout of records, RTTI, virtual tables, etc. 

• The decoration of types, functions, etc. 

• To generalize: anything that you need N > 1 
compilers to agree upon



C++: A complicated 
language

union U { 
    int a; 
    int b; 
}; 
!
int U::*x = &U::a; int U::*y = &U::b; 
!

Does ‘x’ equal ‘y’ ?



We’ve got a standard
How hard could it be?



“[T]wo pointers to members compare equal if they 
would refer to the same member of the same most 
derived object or the same subobject if indirection 
with a hypothetical object of the associated class 
type were performed, otherwise they compare 
unequal.” 

No ABI correctly implements this.



Why does any of this 
matter?

• Data passed across ABI boundaries may be 
interpreted by another compiler 

• Unpredictable things may happen if two 
compilers disagree about how to interpret this 
data 

• Subtle bugs can be some of the worst bugs



Finding bugs isn’t easy
• ABI implementation techniques may collide with 

each other in unpredictable ways 

• One compiler permutes field order in structs if the 
alignment is 16 AND it has an empty virtual base 
AND it has at least one bitfield member AND … 

• Some ABIs are not documented 

• Even if they are, you can’t always trust the 
documentation



What happens if we aren’t 
proactive

• Let users find our bugs for us 

• This can be demoralizing for users, eroding 
their trust 

• Altruistic; we must hope that the user will file 
the bug 

• At best, the user’s time has been spent on 
something they probably didn’t want to do



1. Generate some C++ 

2. Feed it to the compiler 

3. Did the compiler die? If so, we have an 
interesting test case 

4. If not, let’s ask another compiler to do the same 

5. Compare the output of the two compilers

Let computers find the bugs



What we managed to attack

• External name generating (name mangling) 

• Virtual table layout 

• Thunk generation 

• Record layout 

• IR generation



In the beginning, there was 
record layout

• Thought to be high value, low effort to fuzz 

• Generate a single TU execution test; expected 
identical results upon execution 

• We want full coverage but without an excessive 
number of tests



• The plan for version 0.1 of the fuzzer seemed unambitious 

• Generate hierarchies of classes 

• Fill classes with fields 

• Support C scalar types (int, char, etc.) 

• Support bitfields 

• No arrays, pointer to member functions, etc. 

• No virtual methods 

• No pragmas or attributes 

• Dump offsets of fields 

• All classes must have a constructor



First steps…

Let’s generate some hierarchies…



First steps…

struct A { }; 
struct B : virtual A { }; 
struct C : virtual B, A { }; 
!
warning C4584: 'C': 
base-class 'A' is already 
a base-class of 'B'

struct A { }; 
struct B : virtual A { }; 
struct C : A, virtual B { }; 
!
error C2584: 'C': direct 
base 'A' is inaccessible; 
already a base of 'B'



First Lesson

• Successful fuzzing requires a model of what 
good test cases should look like 

• High failure rate can completely cripple the 
fuzzer 

• Less restrictive is better than more restrictive, 
you might lose out on test cases otherwise



• Fuzzer 0.1, while quite limited, was wildly 
successful 

• Support for #pragma pack and 
__declspec(align) was added…



A typical test case

struct A {}; 
struct B {}; 
#pragma pack(push, 1) 
struct C : virtual A, 
           virtual B { 
}; 
#pragma pack(pop) 
struct D : C {};

• alignof(C) == 1, correct 

• alignof(D) == 1, wrong! 

• correct answer is 4



It’s like whack-a-mole

struct A {}; 
struct B {}; 
struct C : virtual A, 
           virtual B { 
}; 
#pragma pack(push, 1) 
struct D : C {}; 
#pragma pack(pop)

• alignof(C) == 4, correct 

• alignof(D) == 4, wrong! 

• correct answer is 1



Testing synthesis of default 
operators

• Copy constructor IR generation is sophisticated 

• Tries to use memcpy if it’s valid & profitable, otherwise 
falls back to field-by-field initialization 

• Sophistication comes at a cost: complexity 

• ABI-specific assumptions baked into generic code, 
resulting in “surprising” IR 

• Fuzz tested by sticking ‘dllexport’ on all classes 

• Forces emission of all special member operators



• We need an IR type for a particular C++ type in 
different contexts 

• Surprisingly leads to different IR types for the 
same C++ type 

• Increased attack surface

C++ type to LLVM IR type



Meet CGRecordLayout

union U { 
    double x; 
    long long y; 
}; 
!
U u; 
!
%union.U = type { double } 
!
@u = global %union.U zeroinitializer

• We asked the compiler to 
“zero-initialize” u 

• First named union member is 
initialized 

• Shocking number of 
compilers get this wrong 

• Code is relatively simple, 
largely powered by AST layout 
algorithms



Meet ConstStructBuilder

union U { 
    double x; 
    long long y; 
}; 
!
U u = { .y = 0 }; 
!
%union.U = type { double } 
!
@u = global { i64 } { i64 0 }

• We asked the compiler to 
“aggregate-initialize” u 

• Can’t use %union.U to 
initialize, wrong type 

• Anonymous type used 
instead 

• Slavishly builds a new type 
from scratch 

• Has its own bitfield layout 
algorithm!



• CGRecordLayout 

• Used for “zero-initialization” 

• “Memory type”, used for loads and stores 

• ConstStructBuilder 

• Used for aggregate initialization (C99 designated initializers, C++11 initializer lists) 

• This seems complicated, why not let one rule them all? 

• CGRecordLayout is useful, largely reduces the number of new types we need but 
cannot always be used for aggregate initialization 

• ConstStructBuilder can handle aggregate initialization but has no idea how to 
handle virtual bases, vtordisps, etc. 

• These problems aren’t insurmountable but they aren’t trivial either :(



What about virtual tables?
• Some ABIs have a virtual base table and a virtual function 

table, others concatenate both into one table 

• Virtual function table entries might point to virtual functions 
or to thunks which then delegate to the actual function body 

• Thunk might adjust the ‘this’ pointer, the returned value or 
both! 

• RTTI data lives in the virtual function table 

• Composed of complex structures which describe 
inheritance structure, layout, accessibility, etc.



• Initial virtual function table comparer was a 
wrapper around llvm’s obj2yaml 

• Worked excellently at first, eventually became 
a bottleneck 

• A dedicated tool was written, llvm-vtabledump 

• More sophisticated: can parse RTTI data, 
dump virtual base offsets, etc.

Comparing VTables



S::`vftable'[0]: const S::`RTTI Complete Object Locator' 
S::`vftable'[4]: public: virtual void * __thiscall S::`destructor'(unsigned int) 
S::`vbtable'[0]: -4 
S::`vbtable'[4]: 4 
S::`RTTI Complete Object Locator'[IsImageRelative]: 0 
S::`RTTI Complete Object Locator'[OffsetToTop]: 0 
S::`RTTI Complete Object Locator'[VFPtrOffset]: 0 
S::`RTTI Base Class Array'[0]: S::`RTTI Base Class Descriptor at (0,-1,0,64)'



A typical VTable testcase

struct A { 
    virtual A *f(); 
}; 
!
struct B : virtual A { 
    virtual B *f(); 
    B() {} 
}; 
!
struct C : virtual A, B {};

• Clang’s vftable for C: 

• A* B::f() [thunk] 

• MS’ vftable for C: 

• B* B::f() [thunk] 

• B* B::f() 

• Both compilers are wrong! 

• A* B::f() [thunk] 

• B* B::f()



A cute trick used for pure 
classes

struct A { 
    virtual A *f() = 0; 
}; 
!
struct B : virtual A { 
    virtual B *f() = 0; 
};

• Would like to be able to 
reference virtual function table 

• Can’t construct an object of 
type A or B 

• Don’t want to add ctor or dtor, 
both have ABI implications 

• __declspec(dllexport) 
references the vftable so it 
may be exported ;)



• RTTI was the first complex component started 
after the fuzzer was written 

• Feedback loop was created, made it possible 
to iteratively improve compatibility 

• Zero known bugs in RTTI as of this talk

This approach worked 
marvelously for RTTI



• It turns out the other compiler has bugs 
(*cue gasps*) 

• Develop heuristics to determine when clang is 
correct and they are incorrect 

• We hope we didn’t miss any interesting cases :( 

• Non-virtual overloads can have an effect on 
virtual table contents

Virtual tables don’t seem so 
hard, what’s the big deal?



• Some ABIs mangle their string literals 

• Wait, seriously? 

• Yeah, that way they merge across translation 
units

String literals



• “hello!” turns into “??_C@_06GANFPHOD@hello?$CB?$AA@“ 

• L“hello!” turns into “??_C@_1O@IMICCIOB@?$AAh?$AAe?
$AAl?$AAl?$AAo?$AA?$CB?$AA?$AA@” 

• Wonderful, right?

Examples



• I thought I was on the right track but I wanted to 
be sure, this was easily tested with a purpose-
built fuzzer

Custom fuzzer written



// <char-type> ::= 0   # char 
//             ::= 1   # wchar_t 
//             ::= ??? # char16_t/char32_t will need a mangling too... 
// 
// <literal-length> ::= <non-negative integer>  # the length of the literal 
// 
// <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including 
//                                              # null-terminator 
// 
// <encoded-string> ::= <simple character>           # uninteresting character 
//                  ::= '?$' <hex digit> <hex digit> # these two nibbles 
//                                                   # encode the byte for the 
//                                                   # character 
//                  ::= '?' [a-z]                    # \xe1 - \xfa 
//                  ::= '?' [A-Z]                    # \xc1 - \xda 
//                  ::= '?' [0-9]                    # [,/\:. \n\t'-] 
// 
// <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 
//               <encoded-string> '@'



98 MS ABI bugs found since the fuzzer was written: 

17748 17750 17761 17767 17768 17772 17816 18021 18022 18024 
18025 18026 18027 18035 18039 18118 18167 18168 18169 18170 
18172 18173 18175 18186 18215 18216 18248 18264 18278 18433 
18434 18435 18436 18437 18444 18464 18467 18474 18476 18479 
18617 18618 18675 18692 18694 18702 18826 18844 18845 18880 
18902 18917 18951 18967 19012 19025 19066 19104 19172 19180 
19181 19240 19361 19398 19399 19407 19408 19413 19414 19487 
19505 19506 19733 20017 20047 20221 20315 20343 20351 20418 
20444 20464 20477 20479 20653 20719 20897 20947 21022 21164 
21031 21046 21060 21061 21062 21064 21073 21074 

Bug numbers in bold are bugs found by superfuzz.

Is this approach effective?



Thanks!


